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ABSTRACT
Consider the first-order and the second-order delay difference equations
Az(n) +oln)e{r(n)) =0, n=20,1,2,., (1)
and

A%z(n) + p(n)z(T(n)) =0, n=0,1,2,..., (2)

where Az(n) = z(n+1)—z(n), A? = AoA;p: N—=R* 7 :N—= N, 7(n) <n-—-1
and lim,, 0o 7(n) = +00,

The most interesting oscillation criteria for Eq.(1), and Eq. (2),especially in
the case where

n—1 n

1
0 lim inf ) < — d lims ' s
< limin Z p(3) < - and limsup Z p(i) < 1

n—o0

i=T(n) i=7{n)

for Eq.(1), are presented.

1 Introduction

The problem of establishing sufficient conditions for the oscillation of all solutions
of the first-order delay difference equation

Az(n) + p(n)z(t(n)) =0, n=0,1,2,.., (1)

has been the subject of many investigations, especially in the case where the delay
n — 7(n) is a constant, that is, in the special case of the difference equation

Az(n) +pln)zln—-k)=0; n=0,1,2,.. (1y
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The oscillation theory of the second-order delay difference equation
A2a(n) + p(n)e(r(n)) = 0, 2)

where Az{n) =z(n+1)—z(n), A>=AcA,p: N>R, 7: N> N,k isa
positive integer, 7(n) < n—1 and lim,_,., 7(n) = +co, has also attracted growing
attention in the recent few vears. See, for example, [1, 2, 4-16, 18, 19, 24, 26, 30,
36, 40, 42, 43, 45-47, 52-55, 58-64, 68, 69, 71-76] and the references cited therein.

Strong interest in Eq.(1}; Eq.(1), and Eq. (2), are motivated by the fact that
they represent discrete analogues of the delay differential equations

2'(t) + p(t)z(7(t)) =0, t2>1, (1)

o/(t) + p(H)a(t —7) =0, 7> 0. (Lo
and

2'(t) + p(FE) =0, t2ty, (2:)

respectively, where the functions p,7 € C([tp,00), R*) (here RT = [0,00)), 7(%)
is nondecreasing, 7(t) < t for t > to and lim o 7(¢) = co. See [3, 17, 20-23,
25, 27-29, 31-35, 37-39, 41, 44, 48-51, 56, 57, 65-67, 70] and the references cited
therein.

By a solution of Eq.(1) we mean a sequence z(n) which is defined for n > min
{7(n) : n > 0} and which satisfies Eq.(1) for all n > 0. A solution z(n) of Eq.(1)
is said to be oscillatory if the terms z(n) of the solution are neither eventually
positive nor eventually negative. Otherwise the solution is called nonescillatory.
{(Analogously for Eq.(1)'and Eq.(2))

In this paper our purpose is to present the state of the art on the oscillation
of all solutions to Eq.(1), Eq. (1) and Eq. (2), especially in the case where

n—1 n
1
0 < liminf ;) < — and I ) < 1
it § P53 wnd Hijsp ) 21
1=T\", =7(n

for Eq.(1), and

n—1 k k41 n
0 < liminf Z p(i)< (m) and limsup Z p(3) <1

. i=n—k i=n—k

for Eq.(1)".



2 Oscillation Criteria for Eq. (1)’

In this section we study the difference equation
Lz(n) Fprlzin—k)=0, n=012,.. (1y

where Az(n) = z(n + 1) — z(n), p(n) is a sequence of nonnegative real numbers
and k is a positive integer.

In 1981, Domshlak [14] was the first who studied this problem in the case
where k = 1. Then, in 1989, Erbe and Zhang [24] established that all sclutions
of Eq.(1)" are oscillatory if

- K
llﬂg}fp(n) > T e (2.1)
or .
limsup Z Pl 1 (Cy)
n—0co Sk

In the same year, 1989, Ladas, Philos and Sficas [43] proved that a sufficient
condition for all solutions of Eq.(1)’ to be oscillatory is that

n—1 k k+1

i=n—k

Therefore they improved the condition (2.1) by replacing the p(n) of (2.1) by the
arithmetic mean of p(n — k), ...,p(n — 1) in (C,)".

Concerning the constant ﬁl— in (2.1) it should be emphasized that, as it
is shown in [24], if

kk
o
then Eq.(1)" has a nonoscillatory solution.

In 1990, Ladas [42] conjectured that Eq.(1)’ has a nonoscillatory solution if

2 < ()"

i=n—k

supp(n) <

holds eventually. However, a counterexample to this conjecture was given in 1994,
by Yu, Zhang and Wang [73].

It is interesting to establish sufficient oscillation conditions for the equation
(1) in the case where neither (Cy)’ nor (Cy) is satisfied.

In 1995, the following oscillation criterion was established by Stavroulakis [54]:



Theorem 2.1 ([54]) Assume that

n—1 k \ k+1
g = lim inf z ( |

i=n—k
and
. ol
limsupp(n) > 1— o (2.2)

then all soluiions of Eq.(1)" oscillate.
In 2004, the same author [55] improved the condition (2.2) as follows:

ket
Theorem 2.2 {[55]) If0 < oy < (:_%) , then either one of the conditions
= ol
limsu i)>1-— Cs)
or
lim sup Z (i) >1—of (2.3)

implies that all solutions of Eq.(1) oscillate.
In 2006, Chatzarakis and Stavroulakis [8], established the following

k+1
Theorem 2.3 ([8]) If 0 < ap < (k—h) and

limsup Z p(i) >1— (2.4)

n—oo

(2 = Ofo)

i=n—k
then all solutions of Eq.(1) oscillate.

Remark 2.1. Observe the following:

(i) When o — 0, then it is clear that the conditions (C3)’, (2.3) and (2.4)
reduce to

n—1
A :=limsup Z > 1,
T ienk
which obviously implies (C)'.
(ii) It always holds
a? o’
ol e
22—a) = 47

sinca « > 0 and therefore condition (C3) always implies (2.4).

4



(i) When k = 1,2
2
2(2 - a) ’
(since, from the above mentioned conditions, it makes sense to investigate the
case when a < (ﬁ)kﬂ) and therefore condition (2.4) implies (2.3).
(iv} When k = 3,

2

o 3 . 2
. LN f ; [l
2(2“a)>a Hdl<ac< 3
while .
8 <alifl “/2<o:< g
—_— ifl—— -1 .
22 - a) 2 T \4

So in this case the conditions (2.4) and (2.3) are independent.

(v) When k > 4
2

= k
=) > o,
and therefore condition (2.3) implies (2.4). ‘
(vi) When k > 10 condition (2.4) may hold but condition (C) may not hold.
(vii) When k is large then o — % and in this case both conditions (C3)" and

(2.3) imply (2.4). For illustartive purposes, we give the values of the lower bound
of A under these conditions when k = 100 (a =~ 0.366) :

(2.3) : 0.999999
(Cs) : 0.966511
(2.4) : 0.959009

We see that the condition (2.4) essentially improves the conditions (Cs)’ and
(2.3}

Also, Chen and Yu [9] obtained the following oscillation condition

CIO—‘\I'l—QO:O—Ofg (04)’

2

n 1.'__
limsu i) >1—
msup 3 | p(i)

i=n—k



3 Oscillation Criteria for Eq. (1)

In this section we study the difference equation
Az(n) + p(n)z(t(n)) =0, n=0,1,2,.., (1)

where Az(n) = z(n + 1) — z(n), p(n) is a sequence of nonnegative real numbers
and 7(n) is a nondecreasing sequence of integers such that 7(n) < n — 1 for all
2 Dand By 7 (n) =00

In the case of Eq.(1) with a general delay argument 7(n), from Chatzarakis,
Koplatadze and Stavroulakis [4], it follows the following

Theorem 3.1 ([4]) If

lim sup Z p(i) > 1 (Ch)

then all solutions of Eq. (1) oscillate.

This result generalizes the oscillation criterion (C;). Also Chatzarakis, Ko-
platadze and Stavroulakis [5] extended the oscillation criterion (Cs) to the general
case of Eq. (1). More precisely, the following theorem has been established in [5].

Theorem 3.2 ([5]) Assume that

n—1
limsup > p(i) < +o0 (3.1)
T ier(n)
and
n-—-1 1
o = lim inf Z p(z) > o (Ca)

i=7(n)
Then all solutions of Eq.(1) oscillate.

Remark 3.1 It is to be pointed out that the conditions (C) and (Cs) are
the discrete analogues of the conditions (C4)" and (C3) for Eq.(1) in the case of
a general delay argument 7(n).

Remark 3.2 ([5]). The condition (Cs) is optimal for Eq.(1) under the as-
sumption that lirf (n—7(n)) = co, since in this case the set of natural numbers

increases infinitely in the interval [7(n),n — 1] for n — co.

Now, we are going to present an example to show that the condition (C5) is
optimal, in the sense that it cannot be replaced by the non-strong inequality.

Example 3.1 ([5]) Consider Eq.(1), where

7(n) = [Bn], p(n) = (07 — (n+ 1)) (1Bn])*, B (0,1), A=-1n""3 (3.2)
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and [8n] denotes the integer part of Sn.
It is obvious that

nl-{—)\ ( —A

n*—(n+1)") = A for n— co.
Therefore \
n(n™ = (n+ 1)) ([Ba))* — I; for n— co. (3.3)

=

Hence, in view of (3.2) and (3.3), we have

n—1
) A a1
Vi TR E in
lfi}gflp(?) = I}g&lf E z —(E+1)” ) (18] ;
i=7(n) ﬁ”}
“11 do, 1 3
— — 1 —:71 i o= e
s Bt DA e
i=[8n]
or
n—1 1
bl ¥ B0 (34)

Observe that all the conditions of Theorem 3.2 are satisfied except the condition
(C3). In this case it is not guaranteed that all solutions of Eq.(1) oscillate. Indeed,
it is easy to see that the function u = n™ is a positive solution of Eq.(1).

As it has been mentioned above, it is an interesting problem to find new
sufficient conditions for the oscillation of all solutions of the delay difference
equation (1), in the case where neither (C}) nor (C5) is satisfied.

In 2008, Chatzarakis, Koplatadze and Stavroulakis [4] investigated for the
first time this question for Eq.(1) in the case of a general delay argument 7(n)
and derived the following theorem.

Theorem 3.3 ([4]) Assume thet 0 < a < 1. Then we have:
o I

hmsup Z p@U)>1-(1-vV1i-«a a) (3.5)

J=7(n}

then all solutions of Eq.(1) oscillate.
(IT) If in addition,

p(n) 21 —+v1—a for all large n, (3.6)
and
- 1-vV1I—«a
limsup (7)) > 1 —o—e—e— 3.7
n—CO J:TZ(??.) ( ) vV ]l -« ( )

then all solutions of Eq.(1) oscillate.



Recently, the above result was improved in [6] and [7] as follows:
Theorem 3.4 ([6]) (I) If 0<a <2 and

limsup Z p(j)>1—%(].—a— 1-2c)

n—0Q >
j=7(n)

then all solutions of Eq.(1) oscillate.
(1) If 0 < a<6—4v2 and in addition,

p(n) = g for all large n,

and

liﬁs;}p i p(j) > 1—;1(2—305—\/4—12-@—}—&2)

j={r)

then all solutions of Eq.(1) are oscillatory.

Theorem 3.5 ([7]) Assume that 0 < o < —1+ /2, and

lim sup i p(j) > 1——%(1—a—\/1_fm)
AR et

then all solutions of Eq.(1) oscillate.

Remark 3.3 Observe the following:
(i) When 0 < a < 1, it is easy to verify that

1—a_\/1——2a~a2> 1—«/1—a>1—a—\/1—
o
2 V1-o 2

(3.8)

(3.9)

(3.10)

(C4)

5 _
W Y

and therefore the condition (Cy) is weaker than the conditions (3.7), (3.8) and

(3.5).
(i) When 0 < @ < 6 — 4+/2, it is easy to show that

%(2—3a—m)>%(1—a—\/1—:m),

and therefore in this case and when (3.9) holds, inequality (3.10) improves the
inequality (Cs) and especially, when o = 6 — 4+/2 ~ 0.3431457, the lower bound

in (C4) is 0.8929094 while in (3.10) is 0.7573593.



4 Oscillation Criteria for Eq. (2)

In this section we study the second-order difference equation
Afz(n) + p(n)z(r(n)) =0 (2)

where Az(n) = z(n+1)—z(n), A* = AoA,p: N-R,, 7 : N> N, 7(n) < n-1
and lim, o 7(n) = +co.
In 1994, Wyrwinska [69] proved that all solutions of Eq. (2) are oscillatory if

m

timsup{ 3 () - Ap@) + () =2 3 o

— i=7(n) i=n+1

while, in 1997, Agarwal, Thandapani and Wong [1] proved that, in the special
case of the second-order difference equation with constant delay

2z(n) + p(n)z(n — k) =0, k>1 (2:)

all solutions are oscillatory if

lim in T (= KYpi) 2 2 (A i 1)k+1.

i=n—k

In 2001, Grzecorczyk and Werbowski [26] studied Eq.(2.) and proved that under
the following conditions

EIL” st —n+k+ Up(i)+
limsup{ + [(n —k=2)+ Z:‘__:l Y~ fc)zp(z)} x » > 1, for some n; > ng,
o X Zi:nﬂ p(z)
or
n—1 L\ FH ’
lﬂgf _Zﬂjk i—k—1)p(i) > (ﬁ) (Cy)

all solutions of Eq. (2.)'are oscillatory. Observe that the last condition (C)” may
be seen as the discrete analogue of the condition

t
1
litm inf /T(s)p(s)ds >
(t)
for Eq. (2.).

In 2001 Koplatadze [36] studied the oscillatory behaviour of all solutions to
the equation (2) with variable delay and established the following.
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Theorem 4.1 ([36]) Assume that

) o LA .
Hlf{-l )\hﬂg}lfn Zﬁp(t)‘?‘ (’&),)\E(O,l)}>1

B i=1
and N
liminfn=* Zep(z)q‘(z) > 0.
i=1
Then all solutions of Eq.(2) oscillate.
Corollary 4.1 ([36]) Let a >0 and

liminfn™" ) " i%p(i) > max {a*A(1 - A): A€ [0,1]} .

i=1

Then oll solutions of the equation
9 1
A?z(n) + p(n)z(jan]) =0, n>max{l,—p, neEN
[84

oscillate.

Corollary 4.2 ([36]) Let ng be an integer and
liminfn ™ znzizp(i) > 1
e i=1 4
Then all solutions of the equation
A2z(n) + p(n)z(n —ng) =0, n>max{l,ng+1}, neN

oscillate.

In 2002 Koplatadze, Kvinikadze and Stavroulakis [40] studied Eq.(2) and es-
tablished the following.

Theorem 4.2 ([40]) Assume that

liminf? = a € (0,00),
and -
lim infn Zp(z) > max {a* A1 —X): A€ [0,1]}. (4.1)

i=n

Then all solutions of Fq.(2) oscillate.

10



In the case where o = 1, the following discrete analogue of Hille’s well-known
oscillation theorem for 2nd order ordinary differential equations (see [29]) is de-
rived.

Theorem 4.3 ([40]) Let np be an integer and

e e

liminfn Zp(z') i

i=n

Then all solutions of the equation
Az(n) +p(n)z(n —no) =0, n>ny,

oscillate.

Remark 4.1 ({40]) As in case of ordinary differential equations, the constant
1/4 in (4.2) is optimal in the sense that the strict inequality cannot be replaced
by the nonstrict one. More than that, the same is true for the condition (4.1) as
well. To ascertain this, denote by c the right-hand side of (4.1), and by Ay the
point where the maximum is achieved. The sequence z(n) = n* obviously is a
nonoscillatory solution of the equation

Azsc(n) + p(n)z([an]) = 0,

where p(n) = —A%(n* )/[an]* and [o] denotes the integer part of o. It can be
easily calculated that

() c+ 1
n)=——-4+o(—=1] as n— co.
P n? n2

Hence for arbitrary € > 0, p(n) > (c—¢)/ n? for n € N, with ny € N sufficiently
large. Using the inequality > > i > n~! and the arbitrariness of e, we obtain

liminfn Zp(z) > 6
i=n

This limit can not be greater than ¢ by Theorem 4.2. Therefore it equals ¢ and
(4.1) is violated.
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